Molecular Dynamics Simulation of Shiga Toxin

Kazumi Omata1
komata@hosp.ncgm.go.jp

Hisashi Okumura2,3
hokumura@ims.ac.jp

Yoshiharu Mori2
ymori@ims.ac.jp

Kiyotaka Nishikawa4
knishika@mail.doshisha.ac.jp

1 Medical Sociology Section, National Center for Global Health and medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-0052, Japan
2 Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
3 The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
4 Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto 610-0394, Japan

Keywords: Shiga toxin, Ligand docking, Molecular dynamics, O157

To develop a drug against infection by Shiga toxin (Stx)-producing \textit{Escherichia coli} O157:H7 \cite{1}, this study investigates docking of Stx2 B subunit (Stx2 B) and a peptide neutralizer, using molecular dynamics simulations.

The used software is Generalized-Ensemble Molecular Biophysics (GEMB) \cite{2}. The PDB code 1R4P is employed for the initial structure of Stx2 B, and the amino acid sequence of the neutralizer is MAPPPRRRRA. The number of residues of Stx2 B is 350, so that the required number of water molecules is estimated to be about 20,000. The force field is AMBER99SB for Stx2 B and TIP3P for water molecules.

Several simulations have shown that Arg's included in the neutralizer are attracted to Asp's and Glu's located at the binding sites of Stx2 B. In a representative result, among the amino acids in the sequence R9-R8-R7-R6-P5-P4-P3 of the neutralizer, R9 and R8 have electrostatic interactions with E15 and D16 of Stx2 B, respectively; R7 and P4 are thought to have small effects on the binding because they are directed towards the outside of Stx2 B from its inside; although R6 interacts with W33 through its alkyl part, this interaction is not electrostatic; P5 is located at the foot of R6 and not participating the binding; it is possible that P3 interacts with alkyl of R32, but the distance between them may be large. It can be suggested that two effects are important in simulations considering water molecules: screening of electrostatic interactions between basic and acidic residues; existence of hydrophobic residues in the neutralizer.
