A study on controller structure of biochemical reaction networks

Takashi Nakakuki1 \hspace{1cm} Jun-ichi Imura2

nakakuki@ces.kyutech.ac.jp \hspace{1cm} imura@mei.titech.ac.jp

1 Department of Systems Design and Informatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, Fukuoka, 820-8502, Japan

2 Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1-W8-1, O-Okayama, Meguro-ku, Tokyo, 152-8552, Japan

Keywords: controller structure, frequency response analysis, biochemical reaction networks

Many mathematical models of intracellular signal transduction systems have been developed toward model-based analysis [1]. However, since the models are typically complex and nonlinear, it is still a difficult task to analyze them [2]. In this poster, we address a fundamental study on what characteristics the biochemical reaction networks have if the system is considered to be a controller.
