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1. Deeper insight on physicochemical determinants of hERG inhibitor specificity
Pranas Japertas, Ph.D  Advanced Chemistry Development Inc.

Drug-induced inhibition of hERG potassium channels is a major obstacle in drug
discovery due to the risk of severe cardiac adverse effects. Applying in silico techniques
for early identification of potential hERG blockers is an attractive approach, but the
usability of available tools is still quite limited. Despite a few relative successes in
hERG inhibition modeling, many recently published models suffer from inherent
complexity and lack of interpretability, while simple and well-known physicochemical
rules remain mostly qualitative. In this study we attempt to overcome these issues by
constructing a large and thoroughly curated hERG inhibition database spanning a
range of >2500 diverse chemicals, and utilizing these data to classify compounds as
hERG blockers/non-blockers solely on the basis of principal physicochemical
determinants such as lipophilicity, ionization, aromaticity, molecular size and flexibility.
The proposed classification model was built using Gradient Boosting statistical method
known for its ability to account for complex nonlinear relationships and low sensitivity
to outliers. The model was able to produce correct classification for almost 80% of
validation set compounds indicating that the major part of variation in hERG inhibition
propensity can be conveyed by general physichochemical trends, in full consistence with
broad ligand specificity of hERG channel. In addition to evaluation and visualization of
the physicochemical effects, the obtained model can be used as a baseline predictive tool
for more detailed analysis, e.g., exploring the potential of discrete structural
modifications to further attenuate hERG liability of candidate compounds.

2. ACD/Percepta Structure Design Engine: Virtual enumeration and screening of
physchem properties for 10°16 compounds in real time.

Pranas Japertas, Ph.D  Advanced Chemistry Development Inc.

The efforts of lead optimization projects are directed towards analogs that have
favorable ADME profiles and are devoid of safety concerns whilst retaining target
activity. Recently, we have developed a novel computational platform called
ACD/Structure Design Engine (SDE) to aid such projects by generating virtual analog



libraries in the physicochemical space regions compatible with the desired biological
characteristics. SDE is implemented on top of ACD/Percepta software platform that
couples virtual analog generation to their physicochemical, ADME/Tox profiling and
ranking by conformance to the particular project objectives. While enumeration of
structural analogs falling within the desired physicochemical property ranges is quite
straightforward in case of one varying substituent position, most real-world projects are
focused on optimizing multiple substituents in different parts of the molecule. To
address this issue, we present a new generation of SDE that would enable extensive
enumeration of substituent property space in accordance with specific constraints
defined by the user, and that would be able to account for up to four simultaneously
varying substituent positions. Several optimization techniques allowed to bring
complexity of this task from O(n4) to approximately O(n2). In such case, with a built-in
database of more than 10”4 building blocks for each substitution position, this leads to
exploration of up to 10716 virtual analogs in seconds, which allows to work with such
virtual set of compounds interactively and greatly enhances the potential of
encountering new compounds with the most favorable property profiles.
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Basics of "Computational Toxicology", and the introduction of "computational
toxicology" workshop
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Computational Toxicology and combinatorial chemistry
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