Visualized and quantitative structural analysis of peptidomimetics for PPI drug discovery

Hajime Takashima¹ takashima@prismbiolab.com

Atsushi Yoshimori² yoshimori@itmol.com

Eiji Honda¹ honda@prismbiolab.com

Tomonori Taguri¹ taguri@prismbiolab.com

Jun Ozawa¹ ozawa@prismbiolab.com

Satoshi Shuto³ shu@pharm.hokudai.ac.jp

Shunji Suetaka⁴ shunji-suetaka@g.ecc.u-tokyo.ac.jp sato-nao140@g.ecc.u-tokyo.ac.jp

Nao Sato⁴

Munehito Arai^{4,5} Yuuki Hayashi4 hayashi@bio.c.u-tokyo.ac.jp arai@bio.c.u-tokyo.ac.jp takehara@prismbiolab.com

Keywords: Peptidomimetics, Conformational analysis, PepMeticsTM Library, PPIs

Protein-protein interactions (PPIs) are significant drug targets and many peptidomimetic molecules have been developed for modulating PPIs [1]. Nevertheless, no analytical method has been established to evaluate how precisely these molecules can mimic target peptide structures.

We developed new methods which enable visual, comprehensive, and quantitative analysis of three-dimensional structures of peptidomimetics: peptide conformation distribution (PCD) plot and peptidomimetic analysis (PMA) map [2]. These methods are based on the conformational analysis of multiple side-chain C_{α} - C_{β} bonds of a peptide fragment and their corresponding bonds (pseudo- C_{α} - C_{β} bonds) in a peptidomimetic molecule, instead of the Ramachandran plot [3] using φ and ψ angles of a single amino acid. PCD-plot is an alignment-free method and visually clarifies conformation distribution of peptidomimetic molecules in the chemical space and similarity with its target peptide secondary structures. PMA-map is an alignment-based method and can quantitatively evaluate similarity between various types of peptidomimetic molecules and their target peptide structures.

Results obtained from analysis using these two methods indicated that our PepMeticsTM scaffold, multi-facial α-helix mimetics, is an excellent peptidomimetics that can mimic spatial positioning of the side-chains of α -helix precisely. We have developed a peptidomimetic compound library (PepMeticsTM Library) using our PepMeticsTM scaffolds and have found PPI hit compounds for the interactions of KIX and c-Myb/MLL proteins known as targets for cancer and leukemia.

In summary, our methods and strategies are useful for development of new peptidomimetic molecules and rational PPI drug discovery.

- [1] Milroy, L. G.; et al., Modulators of protein-protein interactions, Chem. Rev., 2014, 114, 4695-4748.
- [2] Takashima, H.; Yoshimori, A.; et al., Visualized and quantitative conformational analysis of peptidomimetics, submitted.
- [3] Ramachandran, G. N.; et al., Stereochemistry of polypeptide chain configurations, J. Mol. Biol., **1963**, 7, 95–99.

¹ PRISM BioLab Co., Ltd., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-0012, Japan

² Institute for Theoretical Medicine, Inc., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-0012, Japan

³ Faculty of Pharmaceutical Science, Hokkaido University 160-8582, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-0808, Japan

⁴ Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Meguro, Komaba, Tokyo 153-8902, Japan

⁵ Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Meguro, Komaba, Tokyo 153-8902, Japan