gREST prediction of substrate bindings to stereoselective enzymes

Suyong Re1,2 suyongre@nibiohn.go.jp Naoki Kato3,4 naoki.kato@setusnan.ac.jp Keisuke Fujiyama5 keisuke.fujiyama@riken.jp
Shingo Nagano5 snagano@tottori-u.ac.jp Yuji Sugita2,6,7 sugita@riken.jp

1 Artificial Intelligence Center for Health and Biomedical Research National Institutes of Biomedical Innovation, Health, and Nutrition 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
2 Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
3 Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
4 Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
5 Department of Chemistry and Biotechnology Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8550, Japan
6 Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
7 Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan

Keywords: Protein-ligand binding, Molecular dynamics simulation, generalized replica-exchange with solute tempering

Molecular Dynamics (MD) simulations are increasingly used to predict protein-ligand bindings. Advances in enhanced sampling algorithms enable us to perform ms-scale simulations, rapidly raising the predictive power. Here, we apply the generalized replica-exchange with solute tempering method, gREST [1], which is a generalization of REST/REST2 [2], for the prediction of substrate bindings of stereoselective enzymes, Fsa2 and Phm7 [3]. Two enzymes catalyze [4+2] cycloadditions to form enantiomeric products. The gREST simulations extensively sampled possible binding poses otherwise elusive in conventional simulations, predicted the binding models consistent with the site-directed mutagenesis experiment. Intriguingly, the substrate bound to each of enzymes exhibits largely different flexibility, suggesting the distinctive mechanism behind these stereoselective reactions.